TP 10: Lien Mouvement-Action

Protocole expérimental :

- <u>POINTAGE</u>: A l'aide d'un logiciel de traitement de vidéo (AVIMECA), repérer les positions successives M₀, M₁, M₂, ... d'un point modélisant la balle de golf (utiliser la fiche méthode).
- Imprimer la représentation graphique.
- Basculer les résultats de pointage dans un tableur (Libre Office Calc : utiliser la fiche méthode sur le site).
- <u>MODELISATION TRAJECTOIRE</u> : Afficher la représentation graphique des positions de la balle et modéliser la trajectoire par une parabole (polynôme du second degré).
- Noter l'équation de cette parabole de la forme : $y = ax^2 + bx + c$.

Vos Missions :

- 1- Mettre en œuvre le protocole expérimental.
- 2- Sur la représentation graphique imprimée sur Aviméca, nommer les positions successives de la balle M_0 , M_1 , M_2 ,...
- 3- Choisir deux points M_{i-1} et M_{i+1} .
 - a) Pour ces deux points, tracer les vecteurs vitesses $\overrightarrow{v_{l-1}}$ et $\overrightarrow{v_{l+1}}$ en choisissant une échelle convenable (A préciser sur la feuille).
 - b) Construire le vecteur variation $\Delta \vec{v_l} = \vec{v_{l+1}} \vec{v_{l-1}}$ de vitesse au point M_i.
- 4- Faire un bilan des forces modélisant les actions qui s'exercent sur la balle au point M_i. Que peut-on en déduire pour tous les points ?
- 5- Utilisation d'un modèle Python :
- a) Que permet de faire le programme python du doc. 3 ?
- b) Compléter les données manquantes (T, a, b, c) et exécuter le programme.
- c) Que constate-t-on sur les vecteurs variations de vitesse ?
- 6- Conclusion : Quelle relation existe-t-il entre le vecteur variation de vitesse et la somme des forces qui modélisent les actions mécaniques agissant sur la balle ?

Doc. 3 : Programme Python

```
#Modélisation du mouvement parabolique d'une balle lancée
import numpy as np
from scipy import *
import matplotlib.pyplot as plt
#Préciser la durée de la séquence T=50 ms
T =
#préciser les coefficients de l'équation de la parabole de la forme y=ax2+bx+c
a=
b=
C =
#Trace des points modélisant la trajectoire étudiée
t=np.linspace(0,T,22)
g=9.8
x=0-g/2/a*t
y=c+b*t+a*t**2
plt.plot(x,y,"k+")
plt.xlabel("x")
plt.ylabel("y")
plt.title("Tracé de la trajectoire de la balle")
plt.grid()
plt.show()
#tracés des vecteurs vitesses au cours de la trajectoire de la balle
n=range(1,21)
for i in n :
      plt.quiver(x[i],y[i],0.2*(x[i+1]-x[i-1])/(t[i+1]-t[i-
1]),0.2*(y[i+1]-y[i-1])/(t[i+1]-t[i-1]),angles='xy', scale=0.1, scale units='xy',
color='r')
plt.plot(x,y,"k+")
plt.xlabel("x")
plt.ylabel("y")
plt.title("Tracé des vecteurs vitesses")
plt.grid()
plt.show()
#Tracés des vecteurs variation de vitesse pour les points de la parabole
vy=diff(y,1)
vx=diff(x,1)
ay=diff(vy,1)
ax=diff(vx,1)
X=x[0:21]
Y=y[0:21]
n=range(2,20)
for i in n :
```

Chapitre 7 : Mouvement d'un système

```
plt.quiver(x[i],y[i],10*ax[i],10*ay[i], angles='xy', scale=0.7, scale_units='xy',
color='g')
plt.plot(x,y,"k+")
plt.xlabel("x")
plt.ylabel("y")
plt.title("Tracé des vecteurs variations de vitesse")
plt.grid()
plt.show()
```

Fiche méthode : AVIMECA.3 : Logiciel de pointage

LANCEMENT DU LOGICIEL

⇒Lancer le logiciel de pointage « AVIMECA » qui se trouve dans « le dossier physique » sur le bureau de l'ordinateur.

SELECTIONNER LA VIDEO

Cliquer sur « Fichiers » et choisir « Ouvrir un clip vidéo »

Sélectionner « Ce PC » puis « T_VIDEOS_MECA(T :) » puis « chute_parabol_golf » en cliquant

sur « Ouvri	r »		
velo_et_c 00:00:00 353 Ko	hute		
Nom du fichier :	velo_et_chute		Ouvrir
Types de fichiers :	fichiers AVI	-	Annuler

ADAPTER L'IMAGE à L'ECRAN

Fichiers	Clip Po	intages i	?			
and 🕿	100	%	H	N 🖷	(<u></u>)	
ox= 79	Ada	pter		2 36E+2 n	oètres	
in ro p	Aut	re		- 2. OUL * 2 1	noues	
0		これ)			

➡La vidéo apparaît

L'image à l'écran peut être adaptée en choisissant « ADAPTER » dans « CLIP »

L'onglet peut être utilisé comme LOUPE et les images peuvent être visualisées une par une en utilisant les onglets

DEFINIR UN REPERE

Sélectionner l'onglet « Étalonnage » (en haut à droite) puis Cocher « Origine et sens des axes »

Cliquer ensuite sur la balle qui sera le point à repérer à chaque image du clip ! Les axes se tracent automatiquement.

Chapitre 7 : Mouvement d'un système

DEFINIR UNE ECHELLE

Toujours dans l'onglet « Etalonnage », cliquer sur « Echelle »

Cocher « 2nd point » et cliquer en bas de la règle.

RELEVER LES COORDONNEES DE LA BALLE

⇔Cliquer sur l'onglet « Mesures » : le tableau de mesures apparait

Cliquer sur la balle (je vous conseille de pointer le haut de la balle plutôt que le centre moins facile

à repérer) : le premier point de mesure est pris, le clip avance d'une image.

⇔Renouveler l'opération jusqu'à la fin du clip.

Chapitre 7 : Mouvement d'un système

MODIFIER LA MISE EN PAGE AVANT IMPRESSION

Cliquer sur l'onglet « Pointage » : Taille des points : 5

RECUPERER LES INFOS

Cliquer sur l'onglet « Propriété du clip »

Relever la valeur de N (Nombre d'images) :

Relever la valeur dt (durée entre deux images) :

RECUPERER LES MESURES

Cliquer sur « Fichiers » et choisir « Mesures » puis « Copier dans le presse-papier » puis « Le tableau »

IMPRIMER LA CHRONOPHOTOGRAPHIE

Cliquer sur l'onglet

⇒Imprimer.

Senir montrer la feuille au professeur avant d'en imprimer une deuxième pour votre binôme.

POUR EXPLOTER LA CHRONOPHOTOGRAPHIE

➡ Une échelle des distances est donnée. Elle est écrite sous la forme : 1,3E-1 ce qui signifie 1,3.10⁻

➡ Aller sur le bureau, ouvrir « bureautique », puis « libreOffice 6 » puis feuille calc et coller (Ctrl + V).