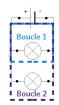
TP 17 : Bilan de puissance dans un circuit électrique !


Objectifs:

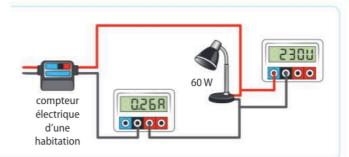
Évaluer le rendement d'un dispositif.

Dans un circuit électrique, une source de tension alimente les dipôles passifs. La puissance fournie par la source de tension correspond-elle à la puissance fournie aux dipôles passifs, qu'ils soient branchés en série ou en dérivation ?

Circuit en série Circuit avec des dérivations

Rappel de collège:

DOC 1 Calcul de la puissance d'un appareil électrique


Pour calculer la puissance d'un appareil électrique, il faut mesurer la tension électrique *U* à ses bornes et l'intensité du courant électrique *I* qui le traverse.

La puissance électrique se calcule alors grâce à la formule :

tension aux bornes du dipôle (en V)

puissance électrique utilisée ou fournie par un dipôle (en **W**)

P = **U** · **I**intensité du courant électrique qui traverse le dipôle (en **A**)

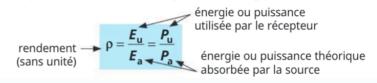
PROTOCOLES EXPÉRIMENTAUX

Expérience 1

- On dispose d'une pile de 4,5 V délivrant une tension U_0 , de deux lampes L_1 et L_2 de puissances différentes et d'un multimètre.
- On réalise un circuit électrique en dérivation à l'aide de la pile et des deux lampes.

Expérience 2

• On réalise un circuit en série avec les mêmes éléments.


DOC 2 Puissance dissipée par un conducteur ohmique

Un conducteur ohmique possède une résistance *R*. La puissance électrique reçue par un tel dipôle se calcule grâce à l'expression :

puissance dissipée par un conducteur $P = R \cdot I^2$ intensité du courant électrique ohmique (en M)

DOC 3 Rendement d'une source de tension

Le rendement d'une source de tension est le rapport entre l'énergie utile (E_u) , utilisée par les récepteurs et l'énergie absorbée (E_a) par la source de tension.

- 1- Mesurer la tension U₀ que la pile fournie.
- 2- Rappel : Comment doivent être branchés le voltmètre et l'ampèremètre pour pouvoir déterminer la puissance d'un dipôle ?
- 3- Réaliser un schéma de l'expérience 1. Faire apparaître :
 - Les multimètres permettant de faire les différentes mesures de tensions et d'intensités dans le circuit.
 - La tension aux bornes de la pile : U₀
 - La tension aux bornes de la lampe L1 : U_{L1}
 - La tension aux bornes de la lampe L2 : U₁₂
 - L'intensité dans les différentes branches du circuit : I, I_{L1} et I_{L2}
- 4- Mettre en œuvre le protocole expérimental : Expérience 1.
- 5- Mesurer et noter les valeurs des grandeurs nécessaires permettant de calculer la puissance des piles fournies par la pile P_{pile} au circuit électrique : U₀, U_{L1}, U_{L2} , I, I_{L1} et I_{L2}

6- Calculer:

- les puissances P_{L1} et P_{L2} utilisées par les lampes L₁ et L₂
- la puissance P_{0-Pile} fournie la pile.
- 7- Réaliser un schéma de l'expérience 2. Faire apparaitre :
 - Les multimètres permettant de faire les différentes mesures de tensions et d'intensités dans le circuit.
 - La tension aux bornes de la pile : U₀
 - La tension aux bornes de la lampe L1 : UL1
 - La tension aux bornes de la lampe L2 : U_{L2}
 - L'intensité dans le circuit : I
- 8- Mettre en œuvre le protocole expérimental : Expérience 2.
 - Mesurer et noter les valeurs des grandeurs nécessaires permettant de calculer la puissance des piles fournies par la pile P_{pile} au circuit électrique : U₀, U_{L1}, U_{L2} et I.

9- Calculer:

- les puissances P_{L1} et P_{L2} utilisées par les lampes L₁ et L₂
- la puissance P_{0-Pile} fournie la pile.
- 10- La différence entre $P_{0\text{-Pile}}$ et P_{pile} provient d'une dissipation d'une partie de la puissance par effet joule. Donner la relation entre $P_{0\text{-Pile}}$, P_{Joule} , P_{L2} et P_{L2} .
- 11- Déduire des mesures la valeur de la résistance responsable des pertes par effet joule.
- 12- Calculer le rendement pour la pile dans les deux circuits.

Conclusion:

13- La pile possède une résistance interne comme la plupart des dipôles passifs. Proposer un bilan de puissance générale à tout type de circuit électrique.