
Correction Contrôle n°3

Exercice 1:

1- Représentation de la force électrostatique qu'exerce p1 sur p2 $\overrightarrow{F_{e\,p1/p2}}$ puis la fore qu'exerce p2 sur p1 $\overrightarrow{F_{e p2/p1}}$:

Les forces sonre représentées dans des sens opposés puisque la force électrostatique entre deux corps de mêmes charges est répulsive.

2- Expression vectorielle de la force électrostatique qu'exerce p1 sur p2 $\overrightarrow{F_{e \, p1/p2}}$:

$$\overrightarrow{F_{e p1/p2}} = k \frac{e \times e}{d^2} \overrightarrow{u}$$

3- Calcul de la valeur de la force de la force électrostatique qu'exerce p1 sur p2 $F_{e\,p1/p2}$:

$$F_{e p1/p2} = k \frac{e \times e}{d^2} = 9,0.10^9 \times \frac{1,60.10^{-19} \times 1,60.10^{-19}}{(2,32.10^{-15})^2} = 43 \text{ N}$$

4- Expression vectorielle de la force gravitationnelle qu'exerce p1 sur p2 $\overrightarrow{F_{g\,p1/p2}}$:

$$\overrightarrow{F_{g p1/p2}} = -G \frac{m_p m_p}{d^2} \vec{u}$$

5- Calcul de la valeur de la force de la force gravitationnelle qu'exerce p1 sur p2
$$F_{g\,p1/p2}$$
 :
$$F_{g\,p1/p2} = G\,\frac{m_p m_p}{d^2} = 6,67.\,10^{-11}\,\times\frac{1,67.10^{-27}\times1,67.10^{-27}}{(2,32.10^{-15})^2} = 3,46.\,10^{-35}\,\mathrm{N}$$

- 6- La force prédominante est la force électrostatique.
- 7- Cette interaction prédominante n'explique pas la cohésion du noyau car la force électrostatique entre deux corps de même charge est répulsive. Donc il y a une autre force attractive qui permet d'expliquer la cohésion du noyau.

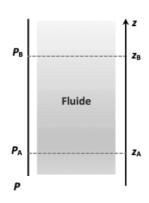
Exercice 2:

1- Énoncé de la loi de Mariotte :

A température constante et à quantité de matière constante, le produit de la pression P d'un gaz par le volume V qu'il occupe est constant :

2- La courbe obtenue est bien cohérente avec la loi de Mariotte. En effet, on a : $P \times V = cst$

Donc P = cst x
$$\frac{1}{v}$$


On voit bien la pression est proportionnelle (droite passant par l'origine) à l'inverse du volume.

3- D'après la loi fondamentale de la statique des fluides, lorsque la profondeur augmente, la pression augmente également.

En effet, la différence $p_A - p_B$ est proportionnelle à la différence $z_B - z_A$, donc si $z_B - z_A$ augmente, $p_A - p_B$ augmente aussi.

4- Déterminons la pression p₁₈ de l'eau de mer à 18 m de profondeur qui correspond à p_A:

$$p_A - p_B = \rho.g.(z_B - z_A)$$

 $p_{18} = p_A = ?$
 $p_A = p_B + \rho.g.(z_B - z_A)$
 $z_A = 0 \text{ m}$
 $z_B = 18 \text{ m}$
 $p_B = P_{atm} = 1,013.10^5 \text{ Pa}$
 $p_{18} = p_A = 1,013.10^5 + 1,02.10^3 \times 9,81 \times (18 - 0) = 2,8.10^5 \text{ Pa}.$

5- Déterminons la valeur de la force pressante F :

S = 1 m²

$$p_{18} = 2.8.10^5 \text{ Pa}.$$

F = $p_{18} \times S = 2.8.10^5 \times 1 = 2.8.10^5 \text{ N}$

6- Déterminons le poids d'un objet ayant une masse environ égale à 29 t :

$$P = m \times g = 29000 \times 9.81 = 2.8.10^5 \text{ N}$$

Effectivement, valeur de cette force pressante est égale à celle du poids d'une masse environ égale à 29 t.

7- Déterminons la valeur du volume d'air V_0 contenu initialement dans la cloche cylindrique de section S et de hauteur H :

$$V_0 = S \times H = 1 \times 2.4 = 2.4 \text{ m}^3$$

8- Déterminons le volume V₁₈ d'air contenu dans la cloche à 18 m de profondeur :

P x V = Cst

$$p_{18} \times V_{18} = p_{atm} \times V_0$$

Donc $V_{18} = (p_{atm} \times V_0) / p_{18} = (1,013.10^5 \times 2,4) / 2,8.10^5 = 0,87 \text{ m}^3$

9- Déterminons de quelle hauteur h₁₈ l'eau est montée dans la cloche :

$$V_{18} = S \times h_{18}$$

Donc $h_{18} = V_{18} / S = 0.87 / 1 = 0.87 m$