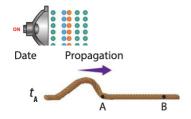
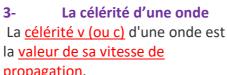

Chapitre 14: Les ondes mécaniques

Qu'est-ce qu'une onde mécanique progressive?

1- Les ondes mécaniques progressives à l'échelle macroscopique

Une <u>onde mécanique progressive</u> est le <u>phénomène de propagation d'une</u> perturbation dans un milieu matériel élastique, sans transport de matière, mais avec transport d'énergie.


La position d'un point du milieu matériel est repérée par son élongation. L'élongation maximale est l'amplitude de l'onde.


Exemples d'onde mécanique	Onde le long d'une corde	Onde le long d'un ressort	Onde sonore dans l'air
Milieu élastique de propagation	Corde	Ressort	Air
Élongation (grandeur physique qui varie)	Distance d'un point de la corde par rapport à sa position de repos	Distance de la position d'une spire par rapport à sa position de repos	Pression de l'air par rapport à la pression moyenne

2- Les ondes mécaniques progressives à l'échelle microscopique

Une onde mécanique progressive est la manifestation macroscopique de la modification des interactions microscopique entre les entités du milieu matériel. Écartées de leur équilibre, elles sont soumises à des interactions qui se propagent de proche en proche.

Position initiale

propagation.

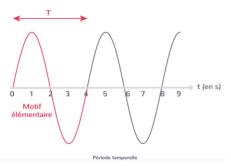
v s'exprime en m.s⁻¹ d en m ∆t en s

Amplitude

C'est le rapport entre la distance d de propagation de l'onde et la durée Δt de propagation (ou retard) :

La célérité d'une onde dépend du milieu matériel dans lequel l'onde se propage.

> La perturbation atteint le point A à la date t_{Δ} puis atteint le point B à la date t_R avec un retard $\Delta t = t_R - t_A$. Pour une célérité v, ce retard est


Exemples d'applications de cette relation :

II- Qu'est-ce qu'une onde mécanique périodique?

1- La double périodicité d'une onde périodique

La périodicité dans le temps :

La <u>période temporelle T</u> d'une onde de périodique, appelée simplement <u>période</u>, est <u>la plus petite durée au bout de laquelle la perturbation se répète en un point donné</u> du milieu matériel.

La <u>fréquence f</u> de l'onde est le <u>nombre de répétition de la perturbation</u> <u>par seconde</u> :

Exemple:


Ici, on a T = 4 s

Calculons f : f = $\frac{1}{T} = \frac{1}{4} = 0,25 \text{ Hz}$

La périodicité dans l'espace :

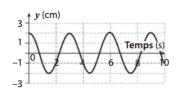
La <u>périodicité spatiale</u> λ (lambda) d'une onde périodique, appelée <u>longueur d'onde</u>, est <u>la plus petite distance</u>, mesurée <u>suivant la direction de propagation</u>, qui <u>sépare deux points du milieu matériel dans le même état vibratoire</u> à un instant donné.

0

La périodicité spatiale λ correspond aussi à la distance parcourue par l'onde pendant une durée T. Ainsi, $\lambda = v \times T$.

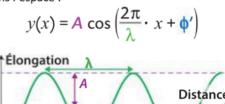
2- La relation entre la période, la longueur d'onde et la célérité

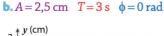
Une onde périodique de célérité v parcourt une distance égale à la longueur d'onde λ pendant une durée égale à la période T :

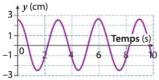

 $V = \frac{\lambda}{T}$

v s'exprime en m.s⁻¹ λ en m T en s

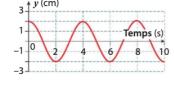
3- Les ondes mécaniques sinusoïdales


Une <u>onde est sinusoïdale</u> lorsque <u>l'élongation de tout point du milieu</u> de propagation est une <u>fonction</u> <u>sinusoïdale du temps</u>. Elle est <u>caractérisée par</u> sa <u>période</u> et par son <u>amplitude</u> (<u>élongation maximale</u>).


a. A = 2 cm T = 3 s $\phi = 0$ rad



Expression et représentation de l'élongation :



 $\mathbf{c.} A = 2 \text{ cm} \quad \mathbf{T} = \mathbf{4} \text{ s} \quad \phi = 0 \text{ rad}$

A est l'amplitude, T est la période, λ est la longueur d'onde, ϕ et ϕ' sont les phases à l'origine Une modification des caractéristiques de l'onde, A ou T (ou λ) ou ϕ (ou ϕ') change la représentation de cette onde.

<u>Rappels</u>: $\cos(0) = 1$; $\cos(\pi) = -1$; $\cos(2\pi) = 1$