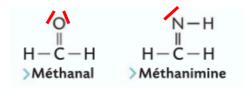
Correction Devoir collaboratif (30min) Des atomes aux molécules

1- Tableau périodique complété :

A Extrait du tableau périodique simplifié										
	1							18		
	Н	2	13	14	15	16	17	Не		
	Li	Ве	В	С	N	0	F	Ar		
1	Na	Mg	Al	Si	Р	S	Cl	Ne		

2- La première période (ligne) du tableau périodique ne comporte-t-elle que deux éléments car la couche 1 ne peut contenir que 2 électrons.


3-

Symbole de l'atome	Formule de l'ion formé	nom de l'ion
Na	Na ⁺	Ion sodium
F	F-	Ion fluorure
Н	H^+	Ion hydrogène
Cl	Cl-	Ion chlorure

4-

Atome	Configuration électronique	Nombre d'électrons sur la dernière couche	Nombre de liaisons covalentes possibles ou nombre d'électron manquant pour être stable	Nombre de doublets non liants	Représentation de Lewis de l'atome
Hydrogène H (Z=1)	1s ¹	1	1	0	н —
Oxygène O (Z=8)	1s ² 2s ² 2p ⁴	6	2	2	(o =
Azote N (Z=7)	1s ² 2s ² 2p ³	5	3	1	N ≡
Carbone C (Z=6)	1s ² 2s ² 2p ²	4	4	0	- c -

5- Schémas de Lewis complétés :

6- Calcul des énergies de liaisons C=O et C=N :

$$E_{C=O} = ?$$

$$E_{C=N} = ?$$

$$E_{\text{méthanal}} = 2 \times E_{\text{C-H}} + E_{\text{C=O}}$$

Donc E
$$_{C=O}$$
 = E $_{méthanal}$ - 2 x E $_{C-H}$ = 1567 - 2 x 413 = 741 USI

$$E_{m\acute{e}thanamine} = 2 \times E_{C-H} + E_{C=N} + E_{N-H}$$

Donc E
$$_{C=N}$$
 = E $_{methanamine}$ - 2 x E $_{C-H}$ + - E $_{N-H}$ = 1564 - 2 x 413 - 391 = 347 USI

De ces deux liaisons, celle qui est la plus stable est la liaison C=O