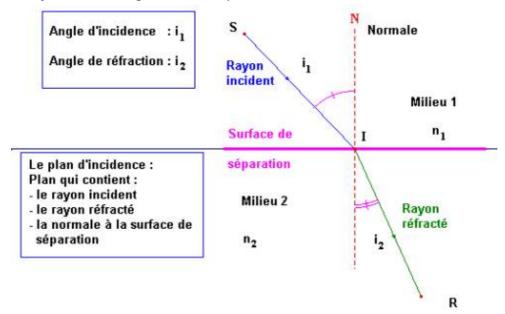
TP 14: Les lois de Snell-Descartes.

Objectifs:

✓ Tester les lois de Snell-Descartes à partir d'une série de mesures.


I- Mise en évidence des phénomènes de réflexion et de réfraction :

- ☼ Observer la photo ci-contre et compléter le schéma ci-dessous en faisant figurer:
- le dioptre : surface de séparation entre l'air et l'eau
- *le point d'incidence I* : point d'intersection entre le rayon incident et cette surface (S)
 - la normale (N) au dioptre : droite perpendiculaire au dioptre et

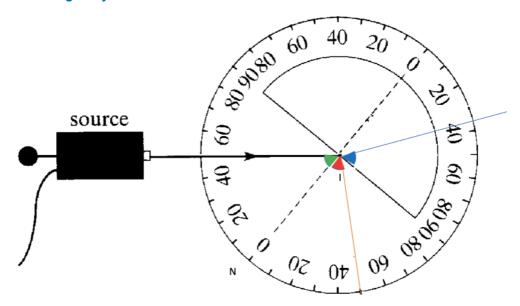
passant par I

- *l'angle d'incidence i*₁ : angle entre le rayon incident et la normale.
- le rayon réfléchi : rayon renvoyé par le dioptre, dans le même milieu que le rayon incident.
- l'angle de réflexion r : angle entre le rayon réfléchi et la normale.
- le rayon réfracté : rayon qui se propage de l'autre côté du dioptre, dans le deuxième milieu.
- l'angle de réfraction i₂ : angle entre le rayon réfracté et la normale.

On appelle *plan d'incidence* le plan défini par le rayon incident et la normale.

<u>Conclusion</u>: La réfraction de la lumière, c'est lorsque la lumière passe d'un milieu à un autre en changant de direction.

- II- Etude expérimentale des lois de Snell-Descartes
 - 1- Dispositif d'étude
- Placer le demi-disque de plexiglas sur le disque gradué de façon à ce que son diamètre se superpose avec l'axe 90°-90° du disque.


L'axe 0°-0° du disque correspond à la Normale à la surface de séparation.

 $i_1 = 50^{\circ}$

2- Première loi de Descartes

Allumer la lampe et faire tourner lentement le disque vers la droite jusqu'à ce que le l'angle d'incidence atteigne 50°.

- le point d'incidence I
- la droite normale (N)
- l'angle d'incidence i₁,
- le rayon réfléchi et l'angle de réflexion r.
- le rayon réfracté et l'angle réfracté i2.

☼ Vérifier que les rayons incident, réfléchi, réfracté et la normale (N) sont toujours dans un même plan.
Comment appelle-t-on ce plan ?

Les rayons incident, réfléchi, réfracté et la normale (N) sont **toujours** dans un même plan. C'est le plan d'incidence.

<u>1ère loi de Descartes</u>: Les rayons incidents, réfléchis et réfractés se situent toujours dans le *plan d'incidence*.

- 3- Deuxième loi de Descartes pour la réflexion

i ₁ (en °)	0	10	20	40	60
r (en °)	0	10	20	40	60

La valeur de l'angle de réflexion r est la même que la valeur de l'angle d'incidence i₁.

2ème loi de Descartes (réflexion):

 $r = i_1$

4- Deuxième loi de Descartes pour la réfraction

i ₁ (en °)	0	10	20	40	60
i ₂ (en °)	0	7,5	13	25	35
sin i ₁	0	0,17	0,34	0,64	0,87
sin i ₂	0	0,13	0,22	0,42	0,57
<u>sin</u> i₁		1,3	1,6	1,5	1,5
sin i ₂					

Le rapport $\sin i_1 / \sin i_2$ est constant.

2ème loi de Descartes (réfraction):

$$\frac{\sin i1}{\sin i2}$$
 = Constante

 \odot Chaque milieu de propagation de la lumière est caractérisé par son **indice de réfraction**. On donne pour indice de réfraction de l'air et du plexiglas : $\mathbf{n}_{air} = \mathbf{1,0}$ et $\mathbf{n}_{plexiglas} = \mathbf{1,5}$. Calculer le rapport :

△ Compléter la 2ème loi de Descartes sur la réfraction en utilisant le vocabulaire adéquat :

2ème loi de Descartes (réfraction): Soient n_1 l'indice de réfraction du milieu d'incidence et n_2 l'indice de réfraction du milieu de réfraction, alors les angles d'incidence (i1) et de réfraction (i2) sont liés par la relation :

$$\frac{\sin i1}{\sin i2} = \frac{n2}{n1}$$